递归算法解决因式分解java版-数据结构与算法java版
发布时间:2023-04-04 16:13 浏览次数:次 作者:佚名
1、问题:1000阶乘的结果有多少个连续的0??
每出现一个2和5,就会在末尾有一个0,所以只要看从1到1000中总共有多少个2和5就可以了,又因为5总比2少,所以,只要看1000的阶乘中有多少个约数5就可以了。同样,只有末尾是0或者5的数才会有5递归算法解决因式分解java版,所以总共有200个数其中包含5递归算法解决因式分解java版,但是有1000/25=40个数包含2个5,1000/125=8个数包含三个5,1000/625=1个数中包含4个5,所以总共有200+40+8+1=249个5,所以结果里面总共有249个连续的0.
那为何只要看在1000阶乘中有多少个约数5就行了呢??以下是我在网上找到的证明:
公式: 当0 < n < 5时,f(n!) = 0; 当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整) f(1000!) = 200 + f(200!) = 200 + 40 + f(40!) = 240 + 8 + f(8!) = 248 + 1 + f(1) =249 详细过程: 问题描述 给定参数n(n为正整数),请计算n的阶乘n!末尾所含有“0”的个数。 例如,5!=120,其末尾所含有的“0”的个数为1;10!= 3628800,其末尾所含有的“0”的个数为2;20!= 2432902008176640000,其末尾所含有的“0”的个数为4。 计算公式 这里先给出其计算公式,后面给出推导过程。 令f(x)表示正整数x末尾所含有的“0”的个数,则有: 当0 < n < 5时,f(n!) = 0; 当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。 问题分析 显然,对于阶乘这个大数,我们不可能将其结果计算出来,再统计其末尾所含有的“0”的个数。所以必须从其数字特征进行分析。下面我们从因式分解的角度切入分析。 我们先考虑一般的情形。对于任意一个正整数,若对其进行因式分解,那么其末尾的“0”必可以分解为2*5。在这里,每一个“0”必然和一个因子“5”相对应。但请注意,一个数的因式分解中因子“5”不一定对应着一个“0”,因为还需要一个因子“2”,才能实现其一一对应。 我们再回到原先的问题。这里先给出一个结论: 结论1: 对于n的阶乘n!,其因式分解中,如果存在一个因子“5”,那么它必然对应着n!末尾的一个“0”。 下面对这个结论进行证明: (1)当n < 5时, 结论显然成立。 (2)当n >= 5时,令n!= [5k * 5(k-1) * ... * 10 * 5] * a,其中 n = 5k + r (0 <= r <= 4),a是一个不含因子“5”的整数。 对于序列5k, 5(k-1), ..., 10, 5中每一个数5i(1 <= i <= k),都含有因子“5”,并且在区间(5(i-1),5i)(1 <= i <= k)内存在偶数,也就是说,a中存在一个因子“2”与5i相对应。即,这里的k个因子“5”与n!末尾的k个“0”一一对应。 我们进一步把n!表示为:n!= 5^k * k! * a(公式1),其中5^k表示5的k次方。很容易利用(1)和迭代法,得出结论1。 上面证明了n的阶乘n!末尾的“0”与n!的因式分解中的因子“5”是一一对应的。也就是说,计算n的阶乘n!末尾的“0”的个数,可以转换为计算其因式分解中“5”的个数。 令f(x)表示正整数x末尾所含有的“0”的个数, g(x)表示正整数x的因式分解中因子“5”的个数,则利用上面的的结论1和公式1有: f(n!) = g(n!) = g(5^k * k! * a) = k + g(k!) = k + f(k!) 所以,最终的计算公式为: 当0 < n < 5时,f(n!) = 0; 当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。 计算举例 f(5!) = 1 + f(1!) = 1 f(10!) = 2 + f(2!) = 2 f(20!) = 4 + f(4!) = 4 f(100!) = 20 + f(20!) = 20 + 4 + f(4!) = 24 f(1000!) = 200 + f(200!) = 200 + 40 + f(40!) = 240 + 8 + f(8!) = 248 + 1 + f(1) =249
编程实现计算有几个0:
int fun(int num)
{
int a;
if (num < 5 && num > 0)
{
return 0;
}
else
{
int k = num / 5;
return (k + fun(k));
}
}