人工智能课程体系-国际化工业设计学科课程体系的研究教改项目立项申请书
FUTURE
未来已来
7月,国务院颁布了《新一代人工智能发展规划的通知》,
10月,人工智能被写进党的十九大报告。
阿尔法狗、阿尔法元、索菲亚,蒙特卡洛树、深度学习、强化学习,生物芯片、虚拟现实、增强现实、自动驾驶……我们已分明听见了人工智能时代的脚步声。
面对新一轮人工智能浪潮人工智能课程体系,中小学如何将人工智能教育落实到课程上,
中国人民大学附属中学站位时代前沿,持续课程创新,做出了可贵的探索。
时至今日,“人工智能 +”相关各类课程在人大附中蓬勃开展,如机器人、数据挖掘、计算机视觉、无人驾驶等,那么我们就来看看他们是怎样开发实施这类课程的。
“STEAM+人工智能教育”课程体系
中国人民大学附属中学在今年10月份组织了中小学人工智能课程建设专家座谈会,邀请了来自清华、北大、中科院、航天科技、人工智能前沿企业等十几位专家教授前来指导。在专家们的指导建议下,结合人大附中实践,从面向全体的普及教育,到部分选修的跨学科实践应用,再到少数的深入动手做研究,梳理了金字塔形的中小学“STEAM+人工智能教育”课程体系,重构了与人工智能本身感知、认知、创新三个层次相对应中小学人工智能教育课程体系。
一、感知层,即中小学普及教育,重在培养基本的“人工智能+”思维和兴趣。这一层次具体落地于中小学信息技术课,将高质量科普资源融入日常科学课、信息课和一些选修课。把人工智能内容渗透到常规课堂的引入环节,介绍人工智能推动各学科领域发展的前沿成果,培养学生的交叉学科创新思维。我们的“STEAM+”人工智能普及教育的核心要素之一是建模仿真教育。
人工智能有三个支柱——大数据、计算能力和建模算法。而中学阶段最能够落地培养的就是建模和算法,这也是数学和信息这两块新课标的直接体现。因此,人工智能+”人才培养的第一步,就是培养其建模和仿真这一核心竞争力。
学校重视建模能力和跨学科素养的培养,融入国际课程精华,创新本土课程,开设各种类型和层次的建模相关选修课,普及“STEAM+人工智能教育”,为“人工智能+跨学科”人才培养打下很好的基础。
二、第二层是认知层,重在跨学科应用实践。比如在计算机课上,让学生与视觉艺术选修课的同学合作开发DIY智能滤镜软件,把人工智能项目式学习的具体目标落实到STEAM各个学科领域。此外,科学跨学科综合实践活动是以建模为核心的“STEAM+AI”解决实际问题的高质量学习平台,即不同学科的同学组成一个小组,从不同学科角度分析同一个问题,建立模型,通过团队合作,解决实际问题。在国际文凭项目的核心课中人工智能课程体系,创新服务实践活动,拓展论文和跨学科认识论都需要学生用跨界思维解决实际问题,对“人工智能+X”的人才培养具有积极推动作用。
认知层的教学,在技术课及选修课中将人工智能开放平台介绍给学生,学生利用这些开放平台,做自己的跨学科实践应用。
三、第三层是研究与创新。目前,我们的学生已经能够将人工智能算法应用到其他领域进行交叉创新。例如朱星宇同学将机器学习算法与天体物理课题相结合,实现了光谱分类速度数量级上的突破。他还是人工智能两门课的课程助教,深入浅出地给学弟学妹们把人工神经网络讲得非常清楚,并且手把手带着他们进行实践——这是对学生创新能力的另一维度的培养。
案例一:朱星宇——一个中学生的人工智能之路
朱星宇是人大附中2011级早培班的一名学生,现在在高三出国班上课。他在学校的身份不只是学生,同时也是计算机视觉与深度学习研学和人工智能与数据挖掘校本选修课的助教,负责两门课的几乎全部编程技术以及部分理论知识的教学。但不了解他的人都不会知道,现在距离他开始系统性学习Python编程才刚刚一年左右。
在2016年九月,因为参加数学建模比赛的需求,他选择了高级数学建模作为校本选修。在这门课上,他的老师是比他大一届的学长孙逸潇同学。之前,他只会一些简单的C语言,可以被认为是没有什么基础。但是在学长的带领下,他很快掌握了Python的基本功能与语法,这是一门对他来说全新的编程语言。开始学习Python一个月后,他就直接参加了HiMCM的数学建模比赛,负责组内所有程序的编写。虽然因为经验并不丰富,比赛的结果并不完美,但是这个经历让他深入建模与算法的学习与实践,为之后的人工智能研究与创新打下了基础。
在2017年1月,他开始准备“登峰杯”数据挖掘竞赛。准备期间,在老师的引导与自学下,他接触到了深度学习,一种较为流行的机器学习算法,并且开始着迷于神经网络可以控制结构又无法详细了解运算过程的“黑箱”特质。在初赛中他和他的队友们使用深度学习算法,综合历届奥运会的奖牌榜数据以及各个参赛国家的经济、国民体质、财政投入情况等大量的数据得到了一种预测奥运会奖牌榜的算法。他们团队的准确率甚至超过了网上公布的预测排行榜中最准确的使用传统方法进行分析预测的高盛集团。他们通过通讯赛选拔,顺利进入了全国总决赛。在2017年8月举办的全国总决赛上,他们依然使用了深度学习算法,对电视剧在线播放与电视端收视率进行了预测,在可靠的模型和坚实的数据基础上,他们的团队又顺利拿到了总决赛的一等奖。
得力于人大附中早培班提供的研修平台,朱星宇在八年级的时候就加入了清华大学天体物理中心的科研团队,进行恒星光谱的研究,但由于技术限制一直没有做出什么特别的工作。在接触了深度学习算法之后,他意识到了机器学习与天体光谱学交叉研究的潜力,于是在自己的钻研下开发了一套基于深度学习的光谱特征提取与分类程序,在速度上大幅度超过了国家天文台现有的分类方法,得到了他在清华的导师很高的评价,并且在北京市青少年科技俱乐部针对全北京市高中生科研的评议中获得“突出”评级。
高三刚开始时,他欣然接受武迪老师让他担任课程助教的邀请,他希望像带他入门的孙逸潇学长一样,带领更多的学弟学妹们感受计算机编程与人工智能之美。现在他已经拿到了旷视科技公司的实习岗位,将在申请季结束之后前往这个“北京平均智商最高”的公司,开展他对于人工智能技术和机器学习算法的进一步探究。
作者简介:
翟小宁,管理学博士,现任中国人民大学党委委员,中国人民大学附属中学校长。北京市第十五届人大代表,海淀区第十六届人大代表,教授,特级教师,北京市特级教师协会会长,中国教育学会高中教育委员会副理事长,创新人才教育研究会常务理事,教育部“国培计划”专家。