当前位置: 主页 > 人工智能

关于人工智能 论文-智能人工气候箱

发布时间:2023-03-12 21:05   浏览次数:次   作者:佚名

人工智能从其产生开始,就表现出强大的生命力,已成为人类科学认识和社会实践活动不可缺少的工具,它开拓了解放人类智能的道路。以下是学习啦小编整理分享的关于人工智能论文参考范文的相关文章,欢迎阅读!

智能人工气候箱_人工智能技术模式识别智能代理机器学习_关于人工智能 论文

人工智能论文参考范文篇一

论人工智能与自然智能的关系

摘要:人工智能从其产生开始,就表现出强大的生命力,已成为人类科学认识和社会实践活动不可缺少的工具,它开拓了解放人类智能的道路。但与人类智能相比,其局限性也非常明显,只有在人类智能的配合下,它才能真正发挥预先设定的功能。不论从人工智能与自然智能的关系以及能动与被动的关系看,还是从认识论的基本原理看,人工智能超过人类智能、甚至统治人类智能都是不可能的。

延长和增强人脑的智能,提高主体认识能力,是研究人工智能的目的。在某些局部功能上,人工智能已经可以代替甚至超过人类智能,但从全局看,造出一个与人一样能够思维的机器来,是不可能的。人的认识能力是无限发展的,人的智能水平处于进化之中,作为人类认识工具的人工智能也在不断发展,但人工智能与人的智能的差距始终存在,人的主体地位是改变不了的。

当我们对智能机器作哲学分析时,应当实事求是、恰如其分地评价,否则,对人工智能这门新学科的发展是不利的。实际上,人工智能的重大突破,还有待智能科学、思维科学的发展。现在距离真正的智能系统尚很远,尽管就其潜力而言,人工智能是2l世纪的科学。

一、人工智能的发展

人工智能是相对人类智能而言的,它是指用机械和电子装置来模拟和代替人类的某些智能,也称“机器智能”或“智能模拟”。人工智能的发展主要有两条途径:一是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的智能活动,即结构模拟;二是以控制论、信息论为理论基础,采取黑箱的方法,用电子计算机从功能或行为方面模拟和代替人的某些智能,即功能模拟。

人工智能作为具有高度综合性的学科范畴,包含着非常丰富深广的内容。它是系统论、控制论、信息集约论、电子学、仿生学、心理学、语言学、机器人学、数理逻辑学、模糊数学、神经生理学等多学科横断跨界、交融结合的产物,其包罗各门学科的广泛性,可以说除哲学之外,任何一门科学都不能与之相比。概括地说,人工智能是自然科学技术、社会科学技术和思维科学技术三大领域有机综合的产物,其诞生和发展将促使人类认识改造客观世界及主体自身升华到一个划时代的新高度。

虽然人工智能这个控制论的分支,从产生到现在还只有很短的历史,但无论在理论方面,还是在应用研究方面都已取得很大成绩。

二、人工智能的优越性

人工智能作为本世纪中叶新崛起的、综合性最强的新兴前沿科学,它涉及非常广泛的学科领域,它也可以同各门科技成果相结合,形成独立的综合性智能科学体系。在当代新的科学技术革命浪潮中,它愈来愈显示出强大的生命活力,具有无限广阔的发展前景。

1.人工智能是人类智能的必要补充。人工智能是随着科学技术的发展,在人们创造了各种复杂的机器设备,大大延伸和扩展了自己的手脚功能,迫切需要相应地延伸思维器官和放大智力功能的情况下,产生发展起来的。它是机器进化的结果,也是人类智能的物质化。它和人脑功能相互联系、相互促进,使人类的认识范围不断地向微观和宏观两极扩展,使人能通过间接方式达到对事物更深层次的本质的认识,使意识的内容得到极大丰富和增长。它已成为人类科学认识和社会实践活动不可缺少的技术“助手”。

中国科学院吴文俊在机器证明方面取得的成果,引起了国内外学术界的重视。他在这个领域内找到了一个快速判定过程,将几何问题表示为代数问题,于1977年证明了初等几何主要一类定理证明可以机械化。后又于1978年证明了初等微分几何中主要一类定理证明可以机械化,而且找到了实现机械化证明切实可行的方法。1980年,他只用了几十个小时就在一台微型机上得出一个不算简单的新定理。吴文俊的工作对人工智能有两点启发:一是强调在人工智能研究中从机器模拟人的求解目的转向讨论机器求解问题的方法;二是使人们重新注意定理证明技术在实际中的具体应用,特别是在实现信息检索机械化中的重要作用。

2.人工智能开辟了人类智力解放的道路。人工智能预示着第三次工业革命的到来,成为改变社会生活面

貌的巨大杠杆。现在,自动化技术不仅渗透到工业、 农业、 建筑、交通、航天和武器等生产和军事领域,例如,现代军事技术的重要分支——战术模拟技术,就是用“蒙特一卡洛法”的处理随机因素的数学方法,在 计算机上完整地模拟包含在战斗过程中可能出现成百上千的偶然性因素,并使过程多次重复,从而模拟出可能出现的战斗结局;而且渗透到产品订货、自动售货以及分配等流通领域;还渗透到银行 管理等金融领域,图书馆管理、情报资料检索,电化 教育以及通信等信息领域;甚至在家庭里面,也出现了各种自动化家用电器。有人把这些自动化叫做四“A”革命或者五“A”革命,即四个或五个方面的自动化:工业自动化、农业自动化、信息自动化、办公自动化或家庭自动化。

三、人212智能的局限性

同人的智能比较,人工智能有若干局限性。人工智能是利用了人和机器的共性——两者都是一个信息转换系统,而抛开了人和机器的区别。但实际上这种区别是存在的,而且是不容忽视的本质区别:人工智能不等于人的智能,而是人的智能的物化,它既有可能性,又有局限性。

1.人工智能只能模拟人的某些自然属性,人的 社会属性是不能模拟的。以电子计算机为基础的人工智能只是主体认识客体的手段。电子计算机的主要特点是它的逻辑结构建立在二值逻辑基础上,计算机只懂机器 语言,即由“1”与“0”组成的代码。严格地说,机器连“1”与“0”也不认识,只不过是穿孔卡片通过光电管把代码变成脉冲信号而已。即使给计算机配上智能 软件,可以称之为智能机器,也不能改变计算机的性质,它仍然是 认识工具。早期的电子计算机由人直接操作,是人在使用工具。目前虽已部分用程序完全代替了人的操作,使信息处理自动化,但程序体现的是人的认识活动,它仅把人的直接操作变为间接操作,因此,仍然是人在使用工具。作为认识工具的计算机,在本质上是一种处理信息的机器。

人脑与这种信息转换器不同,它不仅是加工厂,而且是信息源。虽然人的认识过程也需要信息处理,但更需要对所理解的信息进行思维,加以去粗取精、去伪存真、由此及彼、由表及里的改造,由感性认识上升到理性认识。

2.人工智能不具有人的主观能动性。如果以控制论的观点来分析,那么所谓能动性,就是人的大脑在获取外界各种信息后,自动地进行分析、综合而作出反映;同时,又与原来储存的信息进行比较、概括,最后作出控制客观对象的决策,付诸具体的行动。在整个过程中,相对于主观来说,认识和 改造的客观对象总是处于被动的地位。

智能机可以模拟人的思维,甚至可以部分地超过人的思维功能,但在人事先没有给它安排好程序的情况下,它不能主动地提出任何一个问题,更不能有目的地改造客观世界。就是说,它没有人和人脑那样的能动性。相对于人来说,它只能是被动的。由此可见,信息处理与认识活动之不同,就在于机器只“理解”信息的形式,进行符号加工;人脑却能理解信息的内容,进行能动思维。

3.人工智能只有在自然智能密切配合之下,才能真正发挥自己的作用。人工智能和自然智能之间存在自然而合理的分工,决不是相互排斥和相互取代,而是要相互补充和相互支援,并合理地 组织优化相互间的关系。对这两个系统而言,人是主要的。人工智能应处处为人 工作,适应并满足人的需要。人和自然智能不仅是人工智能的建立者和使用者,而且是人工智能的唯一掌握者。

四、人工智能不可能取代人类智能

随着控制论研究的深入和智能机器的 发展,出现了人与计算机的关系问题,包括机器能否思维,人工智能与人类智能有无界限,机器能否超过人、统治人等。对于人和(人工)智能机器的关系问题,应该进行辩证的考察,既要看到两者的 联系,又要看到两者的区别;既不能把有机物和无机物之间的界限绝对化,又不能抹煞两者在性质上的差异。

就人类的总体而言,智能机的 应用,只能保证人类思维的发展,决不会取消或减弱人的思维活动。

1.从人工智能与自然智能的关系看,机器超过人、统治人是不可能的。人的自然智能,就是指人的智慧和能力。它与人的知识不同。如果说,人的知识是对客观外界规律性的认识,那么智能则是运用这种对客观外界规律性的认识来解决矛盾,有目的地改造客观世界的能力。从信息论的观点看,知识主要指一个人有目的地以某种很好的方式使用这些有用信息的能力。因此,我们认为,知识是智能的基础,智能是知识的深化和发展。

人工智能则是用电子计算机模拟人的思维活动,完成一部分原来需要人的大脑担负的工作。人工智能的本质是用机器模拟人脑的功能,是人脑的延长。人工智能只是人脑智能的放大和延伸,它是由人创造的。机器智能所具有的“思维”能力,不过是人的思维能力在机器上的投影,是模拟人的思维的结果。人工智能仅仅是对输入的信息根据指令进行归纳和选择,它决没有自身的目的性,不会产生自觉的目标。

人工智能不具有人类智能的本质特征。人工智能只能在原有的知识中进行排比、筛选,而不能产生创造的灵感。人脑的思维可以通过概念、判断、推理等形式,直接越过一系列复杂的逻辑次序,可以不拘泥于原来脑中储存的信息辨认客体。人工智能和人类思维的不同还在于,人工智能不能模拟人类思维的社会本质。由于人工智能不具有社会属性,因而它永远也不能成为独立的思维主体。

2.从认识论的基本原理看,机器超过人、统治人是不可能的。人工智能的本质是用机器模拟人的思维功

能。因为作为物质的一种运动形式的思维活动是可以认识的,是有一定的物质基础的,因此人们可以制造出特定的机器来模拟思维的一定方面和特性。机器模拟思维的前提是对思维的认识,其中包括对思维的物质基础、思维规律以及思维功能的认识。然而,辩证唯物论的认识论的一条基本原理就是,认识的客体决定认识的主体,认识的客体先于认识的主体。主体对客体的认识总是受客体发展程度的制约。作为认识客体和模拟对象的认识在后,只有随着人脑及其思维能力的发展,人对大脑及其思维能力的认识才能发展,从而机器模拟大脑及其思维能力的活动才能深入。因此,人工智能只能理解信息的形式,而人却能理解信息的内容。

3.从能动与被动的关系看,机器超过人、统治人是不可能的。用哲学语言说,就是人具有主观能动性。这种主观能动性是建立在实践基础上的,因此,不仅机器不可能有这种能动性,连动物也没有这种能动性。正是这一点,电子计算机虽然可以在某些方面,如运算速度、精确性及记忆容量等方面超过人,但在总体方面,永远不可能等同于大脑,更谈不上超过人、统治人。综上所述,人工智能是以机器为主体,模拟人的智能而人工地制作出来的。作为模拟,它就不是机器作为主体的智能,而是人的智能向机器的传导和转移。机器本身没有智能,它不能自我控制和自我调节,不能作为智能活动的主体。人与机器智能效应是互补互促的关系,彼此相互作用、取长补短,互相推动、携手并进,因而既要发挥人的主导作用,又要充分利用机器的高效处理信息的特长。这样,人类将会更好地认识世界和改造世界。可见,用人工智能系统来模拟人、模拟思维,是自然科学中唯物主义路线的体现;仿生学、控制论、自动化的成就,是唯物主义的胜利和唯心主义的破产。

人工智能论文参考范文篇二

人工智能导论课大作业设置探讨

摘要:大作业的设置对学生深入理解课程内容,提高求解问题的能力具有很大的帮助。文章在笔者多年从事人工智能教学的基础上,探讨人工智能导论课的大作业设置问题,提出大作业应具备的基本条件,说明选择四子棋作为大作业的理由,给出四子棋大作业的评分规则,并对学生的大作业总体情况进行分析,验证选择四子棋作为大作业题目的合理性。

关键词:人工智能;作业;博弈

现在很多课程都设置了大作业,这对学生深入理解课程内容,提高求解问题的能力以及调动学生学习的积极性有很大的帮助。多年来,我们在人工智能导论课上一直设有大作业,受到了同学们较好的评价。下面就如何设置大作业问题,谈一点我们的体会,与各位同行进行交流[1-2]。

1大作业应具备的条件

在以往的教学实践中,我们曾经选择过不同类型的题目作为大作业,比如五子棋程序、基于拼音的整句输入法、基于归结的问题回答系统等。这些题目虽然也起到了很好的效果,但存在着一些不足。比如五子棋程序,如果采用一般的简单规则,则存在先手必胜的策略,而正式比赛规则又过于复杂;而且五子棋是一个比较大众的游戏,有的同学下棋水平比较高,而有的同学则不熟悉,这样大家不在同一个起点上,对于不熟悉的同学存在着不公平。基于拼音的整句输入法、基于归结的问题回答系统等,则缺乏趣味性,少了同学之间的“竞争”,不利于调动同学们学习的积极性。

经过思考,我们认为一个好的大作业,应该具备以下几个条件:

1) 与课程学习内容紧密结合。

2) 趣味性强,能调动同学们学习的积极性。

3) 背景知识简单易懂,以便让学生集中在与课程有关的内容中,而不是把大量的精力花费在背景知识上。

4) 规模适中,不需要花费大量精力处理诸如程序的存储空间问题等。

5) 尽可能对所有同学都是公平的,不存在部分同学熟悉,部分同学不熟悉的情况。

经过认真的总结和思考,最终我们选择了四子棋作为大作业的题目,并对传统的四子棋规则加以改良,使其尽可能地符合上述基本条件。大作业的最终要求是,用程序实现一个四子棋程序,并通过比赛的方式评判大作业的成绩。

2为什么选择四子棋

在说明我们为什么选择四子棋作为大作业之前,首先我们介绍一下什么是四子棋。图1是一个四子棋的棋盘,由M行N列组成。游戏双方分别持不同颜色的棋子,设A持白子,B持黑子,以某一方为先手依次落子。假设为A为先手,落子规则如下:在M行N列的棋盘中,棋手每次只能在每一列当前的最底部落子,如图中的红点处所示,如果某一列已经落满,则不能在该列中落子。棋手的目标是在横向、纵向、两个斜向共四个方向中的任意一个方向上,使自己的棋子连成四个(或四个以上),并阻止对方达到同样的企图。先形成四连子的一方获胜,如果直到棋盘落满双方都没能达到目标,则为平局。

那么,我们为什么选择四子棋作为大作业题目呢?

首先,四子棋规则简单,几句话就能说明其比赛规则;其次,四子棋的规模适中,每一步的可落子点不多;第三,四子棋是一个博弈类的游戏,趣味性强;第四,可以用博弈树搜索等方法求解,与课程内容联系密切;第五,四子棋虽然简单,但是几乎所有同学以前都没有遇到过,所以对大家都是公平的。这些都能很好地满足我们前面提到的大作业应具备的几个条件。

3对四子棋的改进

为了更好地适应大作业的要求,我们对传统的四子棋游戏规则做了一些扩展,以更利于程序求解,避免存在必胜策略,使得同学们集中在求解策略的设计上。改进的目的一是为了更好地体现算法的作用,二是尽可能减少人为的必胜策略的影响。为此,我们对传统的四子棋规则做了如下的改进。

1) 棋盘大小不固定,双方博弈时,在一定的范围内,随机地产生棋盘的大小。

2) 随机地增加一些不可落子点。

比如在图2所示的棋盘中,“红叉”点就是一个不可落子点。当“红叉”点的下面落满了棋子时,只能在“红叉”点的上面落子,而不能在“红叉”点出落子。

对四子棋这样的两点改进,主要是为了避免静态的必胜策略的使用,引导大家更多的关注动态策略的使用,根据当前局势,实时地计算最佳的落子策略。

图2不可落子点的说明

4大作业评判规则

如何评判大作业的成绩对学生会起到一定的引导作用,为此我们提出了“赛会制”和“探索制”两种评判机制。

所谓的赛会制,就是建立一个比赛平台,所有同学的程序提交到平台上,按照以下规则参加比赛。

1) 正确性验证。要求同学们针对四子棋问题实现一个α-β剪枝程序[3],给定一些特定的节点,判断剪枝是否正确。通过正确性验证者获得基本分。

2) 全体同学采用大循环的方式进行比赛,任何两个程序之间进行两局比赛,先手后手各赛一局。

3) 要求5秒内必须完成一次走步。

4) 胜者获得2分,负者获得0分。

5) 平局时,用时少者获得1+x分,用时多者获得1-x分。

6) 按照获得的总分数进行排名。

7) 要求就大作业内容写一篇小论文,根据排名和论文情况给出总成绩。

为了鼓励同学创新,探索新的方法,除了“赛会制”外,我们还设立了一个“探索制”供学生选择。选择探索制的同学,要求在方法上有所创新。比如采用机器学习的方法,寻找评判局面优劣的方法、权重系数等。要求写出一篇论文,对所用方法进行介绍,对不同方法进行比较,通过实验等验证方法的可行性和有效性。选择探索制的同学,虽然也参加比赛,但是最终成绩主要体现在论文的完整性和水平上,不看具体的成绩排名。这样就可以使得学生有更多的发挥空间,对于一些优秀的同学比较有吸引力。

5结果分析

在先期少数同学实验的基础上,我们从2010年开始全面在人工智能导论课上实施四子棋大作业,共有160名同学选择了“赛会制”的方式完成了四子棋大作业。为了验证该大作业的合理性,我们对大作业总体情况做了一个简单的分析,结果如下:

1) 全部同学都通过了正确性测试。这是因为我们事先给出了一些测试样例用于学生自测,通过了这些样例后再提交基本就没有问题了。通过对部分同学的调查,也确实发现一些同学在做正确性测试之前关于人工智能 论文,对α-β剪枝算法理解有误,通过写程序并测试程序的正确性发现了理解上的问题。这也可以看出正确性验证在这里的重要性。

2) 全部160个学生的程序中,无一人全胜,也无一人全败,即便是总成绩第一名也失败了22局,而最后一名也取得了18局的胜利。

3) 平局数很少关于人工智能 论文,在全部比赛中,只有176局平局,仅占全部比赛的0.69%,平均人均平局数为1.1局,平局数少也是我们希望看到的结果。

4) 先手后手胜负比较均衡,经统计,先手胜与后手胜的局数之比为10:9,虽然后手稍微劣势一点,但总的来说变化不大,再加上任何两组程序都是先手后手各赛一次,总体上可以

消除先手后手所带来的影响。

通过以上分析,以四子棋作为人工智能导论课的大作业是可行的、合理的,尤其是经过了改良之后的四子棋,在各个方面都是很均衡的,适合作为大作业使用。

6结语

以四子棋作为大作业,是我们对人工智能导论课的一次尝试,通过各方面的分析可知,这次尝试是成功的,有利于提高学生学习人工智能课程的兴趣,并将所学内容应用于解决实际问题之中。在做大作业的过程中,同学们阅读了大量的论文,对有关博弈问题,甚至是人工智能问题有了更加深入的思考和理解,从中学到了很多课本上学不到的知识。在今后的教学实践中,我们将进一步总结经验,改进大作业的设置,进一步提高人工智能课程的教学水平。

参考文献:

[1] 吴文虎. 精心铸精品 理念须先行[J]. 计算机 教育,2008(13):46-49.

[2] 张彦航,孙大烈,战德臣. 通过大作业促进大学计算机基础课程教学[J]. 计算机教育,2007(7):24-26.

[3] 马少平,朱小燕. 人工智能[M]. 北京:清华大学出版社,2004.

[4] 应宏,刘福明,熊江,等. 计算机课程作业改革的 实践探索[J]. 计算机教育,2009(2):47-48.

人工智能论文参考范文相关文章:

1.人工智能经典论文

2.人工智能经典论文(2)

3.关于人工智能论文

4.关于人工智能的论文

5.人工智能小论文

6.浅谈智能计算机应用论文