java map缓存极限值-map 取 值
前 言
我曾经面试安踏的技术岗,当时面试官问了我一个问题:如果你想使用某个新技术但是领导不愿意,你怎么办?
对于该问题我相信大家就算没有面试被问到过,现实工作中同事之间的合作也会遇到。
因此从我的角度重新去回答这个问题,有以下几点:
1.师出有名,在软件工程里是针对问题场景提供解决方案的,如果脱离的实际问题(需求)去做技术选型,无疑是耍流氓。
大家可以回顾身边的“架构师”、“技术Leader”是不是拍拍脑袋做决定,问他们为什么这么做,可能连个冠冕堂皇的理由都给不出。
2.信任度,只有基于上面的条件,你才有理由建议引入新技术。领导愿不愿意引入新技术有很多原因:领导不了解这技术、领导偏保守、领导不是做技术的等。
那么我认为这几种都是信任度,这种信任度分人和事,人就是引入技术的提出者,事就是提出引入的技术。
3.尽人事,任何问题只是单纯解决 事 都是简单的,以我以往的做法,把基本资料收集全并以通俗易懂的方式归纳与讲解,最好能提供一些能量化的数据,这样更加有说服力。
知识普及OK后,就可以尝试写方案与做个Demo,方案最好可以提供多个,可以分短期收益与长期收益的。完成上面几点可以说已经尽人事了,如果领导还不答应那么的确有他的顾虑,就算无法落实,到目前为止的收获也不错。
4.复杂的是人,任何人都无法时刻站在理智与客观的角度去看待问题,事是由人去办的,所以同一件事由不同的人说出来的效果也不一样。
因此得学会向上管理、保持与同事之间合作融洽度,尽早的建立合作信任。本篇文章更多叙述的事,因此人方面不过多深究,有兴趣的我可以介绍一本书《知行 技术人的管理之路》。
本篇我的实践做法与上述一样,除了4无法体现。那么下文我分了4大模块:业务背景介绍、基础概念讲解、方案的选用与技术细节。
该篇文章不包含代码有8000多千字,花了我3天时间写,可能需要您花10分钟慢慢阅读,我承诺大家正文里面细节满满。
背 景
本公司多年以来用SQL Server作为主存储,随着多年的业务发展,已经到了数千万级的数据量。
而部分非核心业务原本应该超亿的量级了,但是因为从物理表的设计优化上进行了数据压缩,导致维持在一个比较稳定的数量。压缩数据虽然能减少存储量,优化提供一定的性能,但是同时带来的损失了业务可扩展性。
举个例子:
此外我们平台还有作品搜索功能,like ‘%搜索%’查询是不走索引的而走全表扫描,一张表42W全表扫描,数据库服务器配置可以的情况下还是可以的,但是存在并发请求时候,资源消耗就特别厉害了,特别是在偶尔被爬虫爬取数据。
(我们平台API的并发峰值能达到8w/s,每天的接口在淡季请求次数达到了1亿1千万)
关系型数据库拥有ACID特性,能通过金融级的事务达成数据的一致性,然而它却没有横向扩展性,只要在海量数据场景下,单实例,无论怎么在关系型数据库做优化,都是只是治标。
而NoSQL的出现很好的弥补了关系型数据库的短板,在马丁福勒所著的《NoSQL精粹》对NoSQL进行了分类:文档型、图形、列式,键值,
从我的角度其实可以把搜索引擎纳入NoSQL范畴,因为它的确满足的NoSQL的4大特性:易扩展、大数据量高性能、灵活的数据模型、高可用。
我看过一些同行的见解,把Elasticsearch归为文档型NoSQL,我个人是没有给他下过于明确的定义,这个上面说法大家见仁见智。
MongoDB作为文档型数据库也属于我的技术选型范围,它的读写性能高且平衡、数据分片与横向扩展等都非常适合我们平台部分场景,最后我还是选择Elasticsearch。原因有三:
Elasticsearch优缺点
百度百科 :
Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch由Java语言开发的,是一种流行的企业级搜索引擎。Elasticsearch用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。官方客户端在Java、.NET(C#)、PHP、Python、Apache Groovy、Ruby和许多其他语言中都是可用的。
对于满足当下的业务需求和未来支持海量数据的搜索,我选择了Elasticsearch,其实原因主要以下几点:
优点
描述
横向可扩展性
可单机、可集群,横向扩展非常简单方便,自动整理数据分片
快
索引被分为多个分片(Shard),利用多台服务器,使用了分而治之的思想提升处理效率
支持搜索多样化
与传统关系型数据库相比,ES提供了全文检索、同义词处理、相关度排名、复杂数据分析、海量数据的近实时处理等功能
高可用
提供副本(Replica)机制,一个分片可以设置多个副本,假如某服务器宕机后,集群仍能正常工作。
开箱即用
简易的运维部署,提供基于Restful API,多种语言的SDK
那么我个人认为Elasticsearch比较大的缺点只有吃内存,具体原因可以看下文内存读取部分。
Elasticsearch为什么快?
我个人对于Elasticsearch快的原因主要总结三点:
集群分片
内存读取
Elasticsearch是基于Lucene, 而Lucene被设计为可以利用操作系统底层机制来缓存内存数据结构,换句话说Elasticsearch是依赖于操作系统底层的 Filesystem Cache,
查询时,操作系统会将磁盘文件里的数据自动缓存到 Filesystem Cache 里面去,因此要求Elasticsearch性能足够高,那么就需要服务器的提供的足够内存给Filesystem Cache 覆盖存储的数据。
上一段最后一句话什么意思呢?
假如:Elasticsearch 节点有 3 台服务器各64G内存,3台总内存就是 64 * 3 = 192G。
每台机器给 Elasticsearch jvm heap 是 32G,那么每服务器留给 Filesystem Cache 的就是 32G(50%),而集群里的 Filesystem Cache 的就是 32 * 3 = 96G 内存。
此时,在 3 台Elasticsearch服务器共占用了 1T 的磁盘容量,那么每台机器的数据量约等于 341G,意味着每台服务器只有大概10分之1数据是缓存在内存的java map缓存极限值,其余都得走硬盘。
说到这里大家未必会有一个直观得认识,因此我从《大型网站技术架构:核心原理与案例分析》第36页抠了一张表格下来:
操作
响应时间
打开一个网站
几秒
在数据库中查询一条记录(有索引)
十几毫秒
机械磁盘一次寻址定位
4毫秒
从机械磁盘顺序读取1MB数据
2毫秒
从SSD磁盘顺序读取1MB数据
0.3毫秒
从远程分布式缓存Redis读取一个数据
0.5毫秒
从内存中读取1MB数据
十几微秒
Java程序本地方法调用
几微秒
网络传输2KB数据
1微秒
从上图加粗项看出,内存读取性能是机械磁盘的200倍,是SSD磁盘约等于30倍,假如读一次Elasticsearch走内存场景下耗时20毫秒,那么走机械硬盘就得4秒,走SSD磁盘可能约等于0.6秒。讲到这里我相信大家对是否走内存的性能差异有一个直观的认识。
对于Elasticsearch有很多种索引类型,但是我认为核心主要是倒排索引和doc values
倒排索引
Lucene将写入索引的所有信息组织为倒排索引(inverted index)的结构形式。倒排索引是一种将分词映射到文档的数据结构,可以认为倒排索引是面向分词的而不是面向文档的。
假设在测试环境的Elasticsearch存放了有以下三个文档:
以上文档索引建好后,简略显示如下:
词项
数量
文档
4
1
Apache
1
Cookbook
1
Elasticsearch
2
Mastering
1
Server
1
Solr
1
如上表格所示,每个词项指向该词项所出现过的文档位置,这种索引结构允许快速、有效的搜索出数据。
doc values
对于分组、聚合、排序等某些功能来说,倒排索引的方式并不是最佳选择,这类功能操作的是文档而不是词项,这个时候就得把倒排索引逆转过来成正排索引,这么做会有两个缺点:
Lucene 4.0之后版本引入了doc values和额外的数据结构来解决上面得问题,目前有五种类型的doc values:NUMERIC、BINARY、SORTED、SORTED_SET、SORTED_NUMERIC,针对每种类型Lucene都有特定的压缩方法。
doc values是列式存储的正排索引,通过docID可以快速读取到该doc的特定字段的值,列式存储存储对于聚合计算有非常高的性能。
集群分片
Elasticsearch可以简单、快速利用多节点服务器形成集群,以此分摊服务器的执行压力。
此外数据可以进行分片存储,搜索时并发到不同服务器上的主分片进行搜索。
这里可以简单讲述下Elasticsearch查询原理,Elasticsearch的查询分两个阶段:分散阶段与合并阶段。
任意一个Elasticsearch节点都可以接受客户端的请求。接受到请求后,就是分散阶段,并行发送子查询给其他节点;
然后是合并阶段,则从众多分片中收集返回结果,然后对他们进行合并、排序、取长等后续操作。最终将结果返回给客户端。
机制如下图:
分页深度陷阱
基于以上查询的原理,扩展一个分页深度的问题。
现需要查页长为10、第100页的数据,实际上是会把每个 Shard 上存储的前 1000(10*100) 条数据都查到一个协调节点上。
如果有 5 个 Shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到最终第 100 页的 10 条数据。也就是实际上查的数据总量为pageSize*pageIndex*shard,页数越深则查询的越慢。
因此ElasticSearch也会有要求,每次查询出来的数据总数不会返回超过10000条。
那么从业务上尽可能跟产品沟通避免分页跳转,使用滚动加载。而Elasticsearch使用的相关技术是search_after、scroll_id。
ElasticSearch与数据库基本概念对比
ElasticSearch
RDBMS
Index
表
Document
行
Field
列
Mapping
表结构
在Elasticsearch 7.0版本之前(Elasticsearch和关系型数据库的关系是,index = database、type = table,但是在Elasticsearch 7.0版本后(>=7.0)弱化了type默认为_doc,而官方会在8.0之后会彻底移除type。
服务器选型
在官方文档()里建议Elasticsearch JVM Heap最大为32G,同时不超过服务器内存的一半,
也就是说内存分别为128G和64G的服务器,JVM Heap最大只需要设置32G;而32G服务器,则建议JVM Heap最大16G,剩余的内存将会给到Filesystem Cache充分使用。
如果不需要对分词字符串做聚合计算(例如,不需要 fielddata )可以考虑降低JVM Heap。JVM Heap越小,会导致Elasticsearch的GC频率更高,但Lucene就可以的使用更多的内存,这样性能就会更高。
对于我们公司的未来新增业务还会有收集用户的访问记录来统计PV(page view)、UV(user view),有一定的聚合计算,经过多方便的考虑与讨论,平衡成本与需求后选择了腾讯云的三台配置为CPU 16核、内存64G,SSD云硬盘的服务器,并给与Elasticsearch 配置JVM Heap = 32G。
需求场景选择
Elasticsearch在本公司系统的可使用场景非常多,但是作为第一次引入因慎重选择,给与开发与运维一定的时间熟悉与观察。
经过商讨,选择了两个业务场景,用户阅读作品的记录明细与作品搜索,选择这两个业务场景原因如下:
对于上述两个业务,用户阅读作品的记录明细与抽奖业务属于新增业务,对于在投入成本相对较少,也无需过多的需要兼容旧业务的压力。
而作品搜索业务属于优化改造,得保证兼容原有的用户搜索习惯前提下,新增拼音搜索。同时最好以扩展的方式,尽可能的减少代码修改范围,如果使用效果不好,随时可以回滚到旧的实现方式。
设计方案
共性设计
我使用.Net 5 WebApi将Elasticsearch封装成ES业务服务API,这样的做法主要用来隐藏技术细节(时区、分词器、类型转换等),暴露粗粒度的读写接口。
这种做法在马丁福勒所著的《NoSQL精粹》称把数据库视为“应用程序数据库”,简单来说就是只能通过应用间接的访问存储,对于这个应用由一个团队负责维护开发,也只有这个团队才知道存储的结构。
这样通过封装的API服务解耦了外部API服务与存储,调用方就无需过多关注存储的特性,像Mongodb与Elasticsearch这种无模式的存储,无需优先定义结构,换而言之就是对于存储已有结构可随意修改扩展,那么“应用程序数据库”的做法也避免了其他团队无意侵入的修改。
考虑到现在业务需求复杂度相对简单,MQ消费端也一起集成到ES业务服务,若后续MQ消费业务持续增多,再考虑把MQ消费业务抽离到一个(或多个的)消费端进程。
目前以同步读、同步写、异步写的三种交互方式,进行与其他服务通信。
阅读记录明细
本需求是完全新增,因此引入相对简单,只需要在【平台API】使用【RabbitMQ】进行解耦,使用异步方式写入Elasticsearch,使用队列除了用来解耦,还对此用来缓冲高并发写压力的情况。
对于后续新增的业务例如抽奖服务,则只需要通过RPC框架对接ES业务API,以同步读取的方式查询数据。
作品搜索
对于该业务,我第一反应采用CQRS的思想,原有的写入逻辑我无需过多的关注与了解,因此我只需要想办法把关系型数据库的数据同步到Elasticsearch,然后提供业务查询API替换原有平台API的数据源即可。
那么数据同步则一般都是分推和拉两种方式。
推
推的实时性无疑是比拉要高,只需增量的推送做写入的数据(增、删、改)即可,无论是从性能、资源利用、时效各方面来看都比拉更有效。
实施该方案,可以选择Debezium和SQL Server开启CDC功能。
Debezium由RedHat开源的,同时需要依赖于kafka的,一个将多种数据源实时变更数据捕获,形成数据流输出的开源工具,同类产品有Canal, DataBus, Maxwell。
CDC全称Change Data Capture,直接翻译过来为变更数据捕获,核心为监测服务捕获数据库的写操作(插入,更新,删除),将这些变更按发生的顺序完整记录下来。
我个人在我博客文章多次强调架构设计的输入核心为两点:满足需求与组织架构,在满足需求的前提应优先选择简单、合适的方案。技术选型应需要考虑自己的团队是否可以支撑。
在上述无论是额外加入Debezium和kafka,还是需要针对SQL Server开启CDC都超出了我们运维所能承受的极限,引入新的中间件和技术是需要试错的,而试错是需要额外高的成本,在未知的情况下引入更多的未知,只会造成更大的成本和不可控。
拉
拉无疑是最简单最合适的实现方式,只需要使用调度任务服务java map缓存极限值,每隔段时间定时去从数据库拉取数据写入到Elasticsearch就可。
然而拉取数据,分全量同步与增量同步:
对于增量同步,只需要每次查询数据源Select * From Table_A Where RowVersion > LastUpdateVersion,则可以过滤出需要同步的数据。
但是这个方式有点致命的缺点,数据源已被删除的数据是无法查询出来的,如果把Elasticsearch反向去跟SQL Server数据做对比又是一件比较愚蠢的方式,因此只能放弃该方式。
而全量同步,只要每次从SQL Server数据源全量新增到Elasticsearch,并替换旧的Elasticsearch的Index,因此该方案得全删全增。
但是这里又引申出新的问题,如果先删后增,那么在删除后再新增的这段真空期怎么办?
假如有5分钟的真空期是没有数据,用户就无法使用搜索功能。那么只能先增后删,先新增到一个Index_Temp,全量新增完后,把原有Index改名成Index_Delete,然后再把Index_Temp改成Index,最后把Index_Delete删除。
这么一套操作下来,有没有觉得很繁琐很费劲?Elasticsearch有一个叫别名(Aliases)的功能,别名可以一对多的指向多个Index,也可以以原子性的进行别名指向Index的切换,具体实现可以看下文。
阅读记录实现细节
实体定义
优先定义了个抽象类ElasticsearchEntity进行复用,对于实体定义有三个注意的细节点:
1.对于ElasticsearchEntity我定义两个属性_id与Timestamp,Elasticsearch是无模式的(无需预定义结构),如果实体本身没有_id,写入到Elasticsearch会自动生成一个_id,为了后续的使用便捷性,我仍然自主定义了一个。
2.基于上述的分页深度的问题,因此在后续涉及的业务尽可能会以search_after+滚动加载的方式落实到我们的业务。
原本我们只需要使用DateTime类型的字段用DateTime.Now记录后,再使用search_after后会自动把DateTime类型字段转换成毫秒级的Timestamp,
但是我在实现demo的时候,去制造数据,在程序里以for循环new数据的时候,发现生成的速度会在微秒级之间,那么假设用毫秒级的Timestamp进行search_after过滤,同一个毫秒有4、5条数据,那么容易在使用滚动加载时候少加载了几条数据,这样就到导致数据返回不准确了。
因此我扩展了个[DateTime.Now.DateTimeToTimestampOfMicrosecond()]生成微秒级的Timestamp,以此尽可能减少出现漏加载数据的情况。
3.对于Elasticsearch的操作实体的日期时间类型均以DateTimeOffset类型声明,因为Elasticsearch存储的是UTC时间,而且会因为Http请求的日期格式不同导致存放的日期时间也会有所偏差,为了避免日期问题使用DateTimeOffset类型是一种保险的做法。
而对于WebAPI 接口或者MQ的Message接受的时间类型可以使用DateTime类型,DTO(传输对象)与DO(持久化对象)使用Mapster或者AutoMapper类似的对象映射工具进行转换即可。
(注意DateTimeOffset转DateTime得定义转换规则 [TypeAdapterConfig.NewConfig().MapWith(dateTimeOffset=> dateTimeOffset.LocalDateTime)])。
如此一来,把Elasticsearch操作细节隐藏在WebAPI里,以友好、简单的接口暴露给开发者使用,降低了开发者对技术细节认知负担。
[ ]
public class UserViewDuration : ElasticsearchEntity
{
///
/// 作品ID
///
[ ]
public long EntityId { get; set; }
///
/// 作品类型
///
[ ]
public long EntityType { get; set; }
///
/// 章节ID
///
[ ]
public long CharpterId { get; set; }
///
/// 用户ID
///
[ ]
public long UserId { get; set; }
///
/// 创建时间
///
[ ]
public DateTimeOffset CreateDateTime { get; set; }
///
/// 时长
///
[ ]
public long Duration { get; set; }
///
/// IP
///
[ ]
public string Ip { get; set; }
}
public abstract class ElasticsearchEntity
{
private Guid? _id;
public Guid Id
{
get
{
_id ??= Guid.NewGuid();
return _id.Value;
}
set => _id = value;
}
private long? _timestamp;
[ ]
public long Timestamp
{
get
{
_timestamp ??= DateTime.Now.DateTimeToTimestampOfMicrosecond();
return _timestamp.Value;
}
set => _timestamp = value;
}
}
异步写入
对于异步写入有两个细节点:
1.该数据从RabbtiMQ订阅消费写入到Elasticsearch,从下面代码可以看出,我刻意以月的维度建立Index,格式为 userviewrecord-2021-12,这么做的目的是为了方便管理Index和资源利用,有需要的情况下会删除旧的Index。
2.消息订阅与WebAPI暂时集成到同一个进程,这样做主要是开发、部署都方便,如果后续订阅多了,在把消息订阅相关的业务抽离到独立的进程。
按需演变,避免过度设计