当前位置: 主页 > JAVA语言

java线程处理同一数据-Java关于多线程的演进史,你知道几个?

发布时间:2023-06-15 11:13   浏览次数:次   作者:佚名

java 线程数据是否共享_java线程处理同一数据_java线程安全类

Tech

导读

本文主要讲述以下几点内容:

1 JDK多线程的演进历史;

2 Java多进程演进中某些技术点的功能原理及背景,以及解决了什么问题 ;

3 针对某些技术点作者的观点,也欢迎读者在评论区探讨观点。

01

前言

2022年09月22日,JDK19发布了,此版本最大的亮点就是支持虚拟线程,从此轻量级线程家族再添一员大将。虚拟线程使JVM摆脱了通过操作系统调度线程的束缚,由JVM自身调度线程。其实早期sun在Solaris操作系统的虚拟机中实现过JVM调度线程,基于其复杂性,和可维护性考虑,最终都回归到了由操作系统调度线程的模式。

“长安归来锦衣客,昨日城南起新宅”。回想这一路走来,关于多线程的概念令人眼花缭乱,网上相关讲解也不胜枚举,但总感觉缺少一个全局性的视角。为此作者系统性的梳理了Java关于多线程的演进史,希望对读者掌握多线程知识有所帮助。

02

里程碑

如下图统计表格,其中梳理了历代JDK中关于线程相关的核心概念。做一个可能不太恰当的比喻,可以将多线程的演进映射到汽车上,多线程的演进分别经历了手动档时代(JDK1.4及以下)、自动档时代(JDK5-JDK18)、自动驾驶时代(JDK19及以后),这个比喻只为了告诉读者JDK5以后可以有更舒服姿势的驾驭多线程,JDK19以后更是突破了单纯的舒服,它给IO密集型服务的性能带来了质的飞跃。

java 线程数据是否共享_java线程处理同一数据_java线程安全类

java 线程数据是否共享_java线程处理同一数据_java线程安全类

03

手动挡时代

JDK1.4及以下作者称之为多线程“手动档”的时代,也叫原生多线程时代。线程的操作还相对原生,没有线程池可用。研发人员必须手写工具避免频繁创建线程造成资源浪费,手动对共享资源加锁。也正是这个时代酝酿了许多优秀的多线程框架,最有名的被JDK5.0采纳了。

JDK 1.0 Thread和Runnable

1996年1月的JDK1.0版本,从一开始就确立了Java最基础的线程模型,并且,这样的线程模型在后续的修修补补中,并未发生实质性的变更,可以说是一个具有传承性的良好设计。

“抢占式”和“协作式”是两种常见的进程/线程调度方式,操作系统非常适合使用抢占式方式来调度它的进程,它给不同的进程分配时间片,对于长期无响应的进程,它有能力剥夺它的资源,甚至将其强行停止;采用协作式的方式java线程处理同一数据,需要进程自觉、主动地释放资源,在这种调度方式下,一个执行时间很长的线程可能使其他所有需要CPU的线程“饿死”。

Java hotspot虚拟机的调度方式为抢占式调用,因此Java语言一开始就采用抢占式线程调度的方式。JDK 1.0中创建线程的方式主要是继承Thread类或实现Runnable接口,通过对象实例的start方法启动线程,需要并行处理的代码放在run方法中,线程间的协作通信采用简单粗暴的stop/resume/suspend这样的方法。

如何解释stop/resume/suspend的概念呢?就是主线程可以直接调用子线程的终止、暂停、继续方法。类比随身听,上面有三个按键:终止、暂停、继续。想象一下如果你同时听3个随身听,3个随身听就是3个子线程,而你就是主线程,你可以随意控制这三个设备的启停。

这一套机制有个致命的问题,就是容易发生“死锁”,原因在于当线程A锁定了某个资源,还未释放时,被主线程暂停了(suspend方法并不会释放锁),此时线程B如果想占有这个资源,只能等待线程A执行继续操作(resume)后释放资源,否则将永远得不到,发生死锁。

JDK 1.2

粗暴的stop/resume/suspend机制在这个版本被禁止使用了,转而采用wait/notify/sleep这样的多条线程配合行动的方式。值得一提的是,在这个版本中,原子对象AtomicityXXX已经设计好了,主要是解决i++非原子性的问题。ThreadLocal和Collections的加入增加了多线程使用的姿势,因为这两项技术,作者称它为Java的涡轮增压时代。

ThreadLocal

ThreadLocal是一种采用无锁的方式实现多线程共享线程不安全对象的方案。它并不能解决“银行账户或库存增加、扣减”这类问题,它擅长将具有“工具”属性的类,通过复本的方式安全的执行“工具”方法。典型如SimpleDateFormat、库连接等。

值得一提的是它的设计非常巧妙,因为一般的简单思路是:在ThreadLocal里维护一个全局线程安全的Map,key为线程,value为共享对象。这样设计有个弊端就是内存泄露问题,因为该Map会随着越来越多的线程加入而无限膨胀,如果要解决内容泄露,必须在线程结束时清理该Map,这又得强化GC能力,显然投入产出比不合适。于是,ThreadLocal就被设计成Map不由ThreadLocal持有,而是由Thread本身持有。key为ThreadLocal变量,value为值,每个Thread将所用到的ThreadLoacl都放于其中(当然此设计还有其它衍生问题在此不表,感兴趣的读者可以自行搜索或评论探讨)。

Collections

Collections工具类在这个版本被设计出来了,它包装了一些线程安全集合如SynchronizedList。在那个只有Hashtable、Vector、Stack等线程安全集合的年代,它的出现也是具有时代意义的。Collections工具的基本思想是:将线程不安全的集合包装成线程安全的,这样原有代码升级改造不必花很多时间,只需要在集合创建的时候使用所提供的方法初始化集合即可。比较像汽车的涡轮增压技术,在发动机排量不变的情况下,增加发动机的功率和扭矩。由此,Java的涡轮增压时代到来了。

04

自动挡时代

JDK 5.0引入并发包

Doug Lea,中文名为道格·利。是美国的一个大学教师,大神级的人物,J.U.C就是出自他之手。JDK1.5之前,控制程序并发访问同步代码只能使用synchronized,那个时候synchronized的性能还没优化好,控制线程也只能使用Object的wait和notify方法。这个时候Doug Lea给JCP提交了JSR-166的提案,在提交JSR-166之前,Doug Lea已经使用了类似J.U.C包功能的代码三年多,这些代码就是J.U.C的原型。

J.U.C提供了原子化对象、锁、工具套装、线程池及线程安全容器等几大类工具。研发人员可灵活的使用任意能力搭建自己的产品,进可使用ReentrantLock搭建底层框架,退可直接使用现成的工具或容器进行业务代码编写。站在历史的角度去看,J.U.C在2004年毫无争议可以称为“尖端科技产品”。为Java的推广立下了汗马功劳。Java的自动档时代到来了,就好比自动档的汽车降低司机的门槛一样,J.U.C大大降低了程序员使用多线程的门槛,是个开创时代的产品。

当然J.U.C同样存在瑕疵,比如:

CPU开销大:如果自旋CAS长时间地不成功,则会给CPU带来非常大的开销。

解决方案:在JUC中有些地方就限制了CAS自旋的次数,例如BlockingQueue的SynchronousQueue。

ABA问题:如果一个值原来是A,变成了B,然后又变成了A,在CAS检查时会发现没有改变,但实际它已经改变,这就是ABA问题。大部分情况下ABA问题不会影响程序并发的正确性。

解决方案:每个变量都加上一个版本号,每次改变时加1,即A —> B —> A,变成1A —> 2B —> 3A。Java提供了AtomicStampedReference来解决。AtomicStampedReference通过包装[E,Integer]的元组来对对象标记版本戳(stamp),从而避免ABA问题。

只能保证一个共享变量原子操作:CAS机制所保证的只是一个变量的原子性操作,而不能保证整个代码块的原子性。

解决方案:比如需要保证3个变量共同进行原子性的更新,就不得不使用Synchronized了。还可以考虑使用AtomicReference来包装多个变量,通过这种方式来处理多个共享变量的情况。

明确Java内存模型

此版本的JDK重新明确了Java内存模型,在这之前,常见的内存模型包括连续一致性内存模型、先行发生模型。对于连续一致性模型来说,程序执行的顺序和代码上显示的顺序是完全一致的,这对于现代多核且指令执行优化的CPU来说,是很难保证的。而且,顺序一致性的保证将JVM对代码的运行期优化严重限制住了。

但是此版本JSR 133规范指定的先行发生(Happens-before)使得执行指令的顺序变得灵活:

在同一个线程里面,按照代码执行的顺序(即代码语义的顺序),前一个操作先于后面一个操作发生;对一个monitor对象的解锁操作先于后续对同一个monitor对象的锁操作 ;对volatile字段的写操作先于后面的对此字段的读操作;对线程的start操作(调用线程对象的start()方法)先于这个线程的其他任何操作;一个线程中所有的操作先于其他任何线程在此线程上调用 join()方法 如果A操作优先于B,B操作优先于C,那么A操作优先于C。

而在内存分配上,将每个线程各自的工作内存从主存中独立出来,更是给JVM大量的空间来优化线程内指令的执行。主存中的变量可以被拷贝到线程的工作内存中去单独执行,在执行结束后,结果可以在某个时间刷回主存。

但是java线程处理同一数据,怎样来保证各个线程之间数据的一致性?JLS(Java Language Specification)给的办法就是,默认情况下,不能保证任意时刻的数据一致性,但是通过对synchronized、volatile和final这几个语义被增强的关键字的使用,可以做到数据一致性。

JDK 6.0 synchronized优化

作为“共和国长子”synchronized关键字,在5.0版本被ReentrantLock压过了风头。这个版本必须要扳回一局,因此JDK 6.0对锁做了一些优化,比如锁自旋、锁消除、锁合并、轻量级锁、所偏向等,本次优化是对“精细化管理”这个理念的一次诠释。

没优化之前被synchronized加锁的对象只有两个状态:无锁,有锁(重量级锁)。优化后锁一共存在4种状态,级别从低到高依次是:无锁、偏向锁、轻量级锁、重量级锁。这几个状态随着竞争的情况逐渐升级,但是不能降级,目的是为了提高获取锁和释放锁的效率,作者认为其实过于复杂、容易使JVM研发人员望而却步。

这一次优化让synchronized扬眉吐气,自此再也不允许别人说它的性能比ReentrantLock差。但偏向锁在JDK 15被废弃了,作者认为synchronized吃亏在了它只是个关键字,JVM负责它底层的动作,到底应用程序加锁的时候什么样的姿势舒服,得靠JVM“猜”。而ReentrantLock就不同了,它将这件事直接交给程序员去处理,希望公平那就用公平锁、反之就用非公平锁。设计层面算是一种偷懒,但同时也是一种灵活。

JDK 7.0 Fork/Join框架

Fork/Join的诞生也是一个比较先进的产品,它的核心竞争力在于,支持递归式的任务拆解,同时将各任务结果进行合并。但它是一个既熟悉又陌生的技术,熟悉在于它被应用到各种地方,比如接下来JDK8.0要讲的CompletableFuture和Stream;陌生在于实际似乎很少在业务研发过程中使用到它。

甚至有人觉得鸡肋。作者的观点是,对于业务需求相关的研发,基本用不到,因为大批数据量的场景有数仓工具,其它场景可以用线程池代替;如果作为中间件框架编写相关的研发,兴许会用到。

JDK 8.0

此版本的发布对于Java来说是划时代的,以至于现在全世界在运行的Java程序里,此版本占据了一半以上。但多线程相关的更新不如JDK5.0那么具有颠覆性。此版本除了增加了一些原子对象之外 ,最亮眼的便是以下两项更新。

Completable Future

关于CompletableFuture相关介绍很多,大多是讲原理及怎么用。但是作者始终不明白一个问题:为什么在有那么多线程池工具的情况下,还会有CompletableFuture的出现,它解决了什么痛点?它的核心竞争力到底是什么?

作者认为CompletableFuture的核心竞争力是任务编排。CompletableFuture继承Future接口特性,可以进行并发执行任务特性,但这些能力都是有可替代性的。但它的任务编排能力无可替代,它的核心API中包括了构造任务链,合并任务结果等都是为了任务编排而设计的。所以JDK之所以在此版本引入此框架,主要是解决业务开发中越来越痛的任务编排需求。

CompletableFuture底层使用了Fork/Join框架实现。

Stream

《架构整洁之道》里曾提到有三种编程范式,结构化编程(面向过程编程)、面向对象编程、函数式编程。Stream是函数式编程在Java语言中的一种体现,作者认为,初级程序员向中级进阶的必经之路就是攻克Stream,初次接触Stream会特别不适应,但如果熟悉以后将打开一个编程方式的新思路。作为研发人员经常混淆三个概念,函数式编程、Stream、Lambda表达式,作者对于概念的理解如下:

•函数式编程是一种编程思想,各种编程语言中都有该思想的实践;

•Stream是JDK8.0的一个新特性,也可以理解新造了个概念,目的就是迎合函数式编程这种思想,通过Stream的形式可以在集合类上实现函数式编程;

•Lambda 表达式(lambda expression)是一个匿名函数,通过它可以更简洁高效的表达函数式编程。

那么Stream和多线程的关系是什么?Stream中的相关并行方法底层是使用了Fork/Join框架实现的。《Effective Java》中有一条相关建议“谨慎使用Stream并行”,理由就是因为所有的并行都是在一个通用的Fork/Join池中运行的,一个pipeline运行异常,可能损害其他不相关部分性能。

JDK 9.0改善锁争用机制

锁争用限制了许多Java多线程应用性能,新的锁争用机制改善了Java对象监视器的性能,并得到了多种基准测试的验证(如Volano),这类测试可以估算JVM的极限吞吐量。实际中, 新的锁争用机制在22种不同的基准测试中都得到了出色的成绩。如果新的机制能在Java 9中得到应用的话, 应用程序的性能将会大大提升。

简单的解释就是当多个线程发生锁争用时,优化之前:晚到的线程统一采用相同的标准流程进行锁等待。优化后:JVM识别出一些可优化的场景时直接让晚到的线程进行“VIP通道”式的锁抢占。

响应式流

响应式流(Reactive Streams)是一种以非阻塞背压方式处理异步数据流的标准,提供一组最小化的接口,方法和协议来描述必要的操作和实体。

什么叫非阻塞背压?背压是back pressure的缩写,简单讲,生产者给消费者推送数据,当消费者处理不动了,告知生产者,此时生产者降低生产速率,此机制使用阻塞的方式实现最简单,即推送时直接返回压力数据。非阻塞方式实现增加了设计的复杂度,同时提高了性能。

为了解决消费者承受巨大的资源压力(pressure)而有可能崩溃的问题,数据流的速度需要被控制,即流量控制(flow control),以防止快速的数据流不会压垮目标。因此需要反压即背压(back pressure),生产者和消费者之间需要通过实现一种背压机制来互操作。实现这种背压机制要求是异步非阻塞的,如果是同步阻塞的,消费者在处理数据时生产者必须等待,会产生性能问题。

响应式流(Reactive Streams)通过定义一组实体,接口和互操作方法,给出了实现非阻塞背压的标准。第三方遵循这个标准来实现具体的解决方案,常见的有Reactor、RxJava、Akka Streams、Ratpack等。

JDK 10 线程-局部管控

Safepoint及不足:

Safepoint是Hotspot JVM中一种让所有应用程序停止的一种机制。JVM为了做一些底层的工作,必须要Stop The World,让应用线程都停下来。但不能粗暴的直接停止,而是会给应用线程发送个指令信号告诉它该停下了。此时应用线程执行到一个Safepoint点时就会听从指令并响应。这也是为什么叫Safepoint。之所以加safe,是强调JVM要做一些全局的安全的事情。

全局安全相关的事情包括以下:

1、垃圾清理暂停;2、代码去优化(Code deoptimization);3、flush code cache;4、类文件重新定义时(Class redefinition,比如热更新 or instrumentation);5、偏向锁的取消(Biased lock revocation);6、各种debug操作(比如:死锁检查或者stacktrace dump等)。

然而,让所有线程都到就近的safepoint停下来本身就需要较长的时间。而且让所有线程都停下来显得太过鲁莽和专断。为此Java10就引入了一种可以不用stop all threads的方式,就是线程-局部管控(Thread Local Handshake)。

比如以下是不需要stop所有线程就可以完成的场景:

1、偏向锁撤销。这个事情只需要停止单个线程就可以撤销偏向锁,而不需要停止所有的线程;

2、减少不同类型的可服务性查询的总体VM延迟影响,例如获取具有大量Java线程的VM上的所有线程的stack trace可能是一个缓慢的操作;

3、通过减少对信号(signals)的依赖来执行更安全的stack trace采样;

4、使用非对称Dekker同步技术,通过与Java线程握手来消除一些内存障碍。例如,G1和CMS里使用的“条件卡标记码”(conditional card mark code),将不再需要“内存屏障”。这样的话,G1发送的“写屏障(write barrier)”就可以被优化, 并且那些尝试要规避“内存屏障”的分支也可以被删除。

JDK 15 禁用和废弃偏向锁

为什么要废弃偏向锁?偏向锁在过去带来的的性能提升,在现在看来已经不那么明显了。受益于偏向锁的应用程序,往往是使用了早期 Java 集合 API的程序(JDK 1.1),这些 API(Hashtable 和 Vector) 每次访问时都进行同步。JDK 1.2 引入了针对单线程场景的非同步集合(HashMap 和 ArrayList),JDK 1.5 针对多线程场景推出了性能更高的并发数据结构。这意味着如果代码更新为使用较新的类,由于不必要同步而受益于偏向锁的应用程序,可能会有很大的性能提高。此外,围绕线程池队列和工作线程构建的应用程序,性能通常在禁用偏向锁的情况下变得更好。

05

自动驾驶时代

虚拟线程使Java进入了自动驾驶时代。很多语言都有类似于“虚拟线程”的技术,比如Go、C#、Erlang、Lua等,它们称之为“协程”。这次Java没有新增任何关键字,甚至没有增加新的概念,虚拟线程比起goroutine、协程更容易理解。

JDK 19 虚拟线程

传统Java中的线程模型与操作系统是 1:1 对应的,创建和切换线程代价很大,受限于操作系统,只能创建有限的数量。当并发量很大时,无法为每个请求都创建一个线程。使用线程池可以缓解问题,线程池减少了线程创建的消耗,但是也无法提升线程的数量。假如并发量是2000,线程池只有1000个线程,那么同一时刻只能处理1000个请求,还有1000个请求是无法处理的,可以拒绝掉,也可以使其等待,直到有线程让出。

虚拟线程之前的方案是采用异步风格。已经有很多框架实现了异步风格的并发编程(如Spring5的Reactor),通过线程共享来实现更高的可用性。原理是通过线程共享减少了线程的切换,降低了消耗,同时也避免阻塞,只在程序执行时使用线程,当程序需要等待时则不占用线程。异步风格确实有不少提升,但是也有缺点。大部分异步框架都使用链式写法,将程序分为很多个步骤,每个步骤可能会在不同的线程中执行。不能再使用熟悉的 ThreadLocal 等并发编程相关的API,否则可能会有错误。编程风格上也有很大的变化,比传统模式的编程风格要复杂很多,学习成本高,可能还要改造项目中的很多已有模块使其适配异步模式。

虚拟线程的实现原理和一些异步框架差不多,也是线程共享,当然也就不需要池化。在使用时可以认为虚拟线程是无限充裕的,想创建多少就创建多少,不必担心会有问题。不仅如此,虚拟线程支持 debug,并且能被 Java 相关的监控工具所支持,这很重要。虚拟线程会使程序的内存占用大幅降低,所有IO密集型应用,比如Web Servers,都可以在同等硬件条件下,大幅提升IO的吞吐量。原来1G内存,同时可以host 1000个访问,使用虚拟线程后,按照官方的说法,能轻松处理100万的并发,具体到业务场景上能否支撑还要看压力测试,但10万应该能够轻松实现,而不需要为此付出任何的代价,甚至连代码都不用改。

虚拟线程可以使得你保持传统的编程风格,也就是一个请求一个线程的模式,像使用线程一样使用虚拟线程,程序只需要做很少的改动。虚拟线程也没有引入新的语法,可以说学习和迁移成本极低。

值得一提的是虚拟线程底层依然使用了Fork/Join框架。

06

总结

本文语言通俗易懂,是一篇具有大纲性质的关于多线程的梳理,作者从历史演进的角度讲了多线程相关知识体系,便于读者知其然知其所以然。

java线程处理同一数据_java线程安全类_java 线程数据是否共享